
1

Electrical and Computer Engineering

Computer Design Lab – ENCS4110

ARM Basic I/O

Introduction
A microcontroller (or MCU) is a computer-on-a-chip. It is a type of microprocessor emphasizing self-

sufficiency and cost-effectiveness, in contrast to a general-purpose microprocessor (the kind used in a

PC).

A microcontroller is a single integrated circuit, commonly with the following features:

 Central processing unit (CPU) - ranging from small and simple 4-bit processors to

sophisticated 32- or 64-bit processors

 Memory (SRAM and Flash memory)

 Input/output interfaces such as serial ports (UARTs)

 Peripherals such as timers and watchdog

 Many include analog-to-digital converters

 Clock generator - often an oscillator for a quartz timing crystal, resonator or RC circuit

Microcontroller versus Microprocessor
A microcontroller differs from a microprocessor in many ways. The first and most important difference

is its functionality. In order that the microprocessor may be used, other components such as memory

must be added to it. Even though the microprocessors are considered to be powerful computing

machines, their weak point is that they are not adjusted to communicating to peripheral equipment. On

the other hand, the microcontroller is designed to be all of that in one. No other specialized external

components are needed for its application because all necessary circuits are already built into it.

2

ARM Processor
ARM-Advanced RISC Machine, is one of a family CPUs based on a reduced instruction set computer

(RISC) architecture developed by British company ARM Holdings. A RISC-based computer design

approach means ARM processors require significantly fewer transistors than typical processors in

average computers. This approach reduces costs, heat and power use. These are desirable traits for

light, portable, battery-powered devices—including smart phones, laptops, tablet and notepad

computers), and other embedded systems.

Memory Unit
 Flash memory

The contents of this memory can be written and cleared practically an unlimited number of times, the

microcontrollers with Flash ROM are ideal for learning, experimentation and small-scale manufacture.

 Random Access Memory(RAM)
Once the power supply is off the contents of RAM (Random Access Memory) is cleared. It is used for

temporary storing data and intermediate results created and used during the operation of the

microcontroller.

 Electrically Erasable Programmable ROM (EEPROM)
The contents of the EEPROM may be changed during operation (similar to RAM), but remains

permanently saved even upon the power supply goes off (similar to ROM). Accordingly, an EEPROM is

often used to store values, created during operation, which must be permanently saved.

LPC21xx Microcontrollers
The LPC2131/2132/2134/2136/2138 microcontrollers are based on a 32/16 bit ARM7TDMI-S CPU

with real-time emulation and embedded trace support, that combines the microcontroller with 32 kB,

64 kB, 128 kB, 256 kB and 512 kB of embedded high speed Flash memory. A 128-bit wide memory

interface and a unique accelerator architecture enable 32-bit code execution at maximum clock rate.

3

Due to their tiny size and low power consumption, these microcontrollers are ideal for applications

where miniaturization is a key requirement, such as access control and point-of-sale. With a wide range

of serial communications interfaces and on-chip SRAM options of 8/16/32 kB, they are very well

suited for communication gateways and protocol converters, soft modems, voice recognition and low

end imaging, providing both large buffer size and high processing power. Various 32-bit timers, single

or dual 10-bit 8 channel ADC(s), 10-bit DAC, PWM channels and 47 GPIO lines with up to nine edge

or level sensitive external interrupt pins make these microcontrollers particularly suitable for industrial

control and medical systems.

LPC2138 Microcontroller
This is the microcontroller we are going to use during our lab. This microcontroller has the following

main features :

 an ARM7TDMI-S based high-performance 32-bit RISC Microcontroller

 512KB on-chip Flash ROM

 32KB RAM

 Two 8-ch 10bit ADC

 Two UARTs

 Single 10-bit DAC

 Two I2C serial interfaces

 Two SPI serial interfaces

 Three 32-bit timers

 Watchdog Timer

 Vectored Interrupt Controller

 In-System Programming (ISP)

 In-Application Programming (IAP)

 Up to 47 general purpose I/O pins.

 CPU clock up to 60 MHz

 On-chip crystal oscillator and On-chip PLL.

4

Pin Diagram

Software Tools
These programs are the backbone of the microprocessor and microcontroller based systems; since using

Keil we can build the software of the project using C, and then we can simulate the project virtually

using Proteus, finally we can download the program on the microcontroller and see the practical

results.

Keil Legacy Device Database
In order to have NXP LPC2138 controller in the device selection when creating new project with the Keil

uversion, you need to download and install Keil.LPC1700_DFP.2.7.0.pack

https://armkeil.blob.core.windows.net/legacy/MDK79525.EXE

https://armkeil.blob.core.windows.net/legacy/MDK79525.EXE

5

Create a new project with Keil MDK
Create new project using LPC2138 controller and copy the following c code into a new c file. This is a simple

program to toggle the LED on the LPC2138 microcontroller

Generate the Hex file machine code

1- Right click on the “Source Group1” and choose “Options for Target “Target 1”. Or simply choose “Option for

Target” icon as shown.

2- Next, from the ”Options for Target “Target 1”” dialog, click on “Output” from the upper menu bar and check on

“create HEX file” and press “Ok” button.

6

3- Click on “Rebuild” to rebuild the file to create a hex file.

Proteus Program
Proteus is a simulation program used to simulate hardware connections and check that they are error-

free before connecting them.

Installation of Proteus
1- Run the “Proteus 8 professionals sp0 build 15417” as an administrator.

2- Press next until you reach the window which asks for the key.

3- From browse for key; browse until you find the file where the key exist.

4- Then click on Grassington North Yorkshire.lxk and then press install.

5- Then choose yes and close the window, after that press Next and choose Typical install to install the program.

7

6- After installation, for Crack, copy (“PIN”,”Models”,”Help”,”LICENCE”) and past them on the folder where the

Protues installed in your PC.

7- Run the LICENCE and press install.

8- Finally, Choose “Ok” and then “Close”

Create a new project with Proteus
1- Open Proteus and click on “New Project” button.

2- Name your project with suitable name and click “Next”.

3- Choose “Creat a schematic from the selected template” and click “Next”.

8

4- Click “ Next”.

5- Click “Next”.

9

6- Click “Finish”. And now your workspace is ready.

7- Press the “Component mode” to choose the components from “P” icon

8- As an Example, we deal with “LPC2138 Microcontroller” in this lab, from the Keyword field we write the

keyword “LPC2138” and choose it then press “Ok” button.

10

9- From “Terminal Mode” we can find the “Power” and the “Ground”.

10- To install your program to the microcontroller, double click on the “LPC2138” , then from the “Edit

Component” dialog click on “search file” field and browse for your .hex file and then press “OK”.

11

11- You can run the simulation as shown.

--

Basic I/O
Generally, every microcontroller has at minimum two registers associated with each of I/O port. They

are Data Register and Direction Register. The Direction register is used to make the pin either input or

output. After the Direction register is properly configured, then we use the Data register to actually

write to the pin or read data from the pin. For example, suppose you want your device to turn three

signal LEDs and simultaneously monitor the logic state of five sensors or push buttons. Some of ports

need to be configured so that there are three outputs (connected to the LEDs) and five inputs

(connected to sensors).

LPC2138 GPIO Programming
LPC2138 MCU has 2 ports, port0 and port1.

 Port 0 is a 32-bit I/O port with individual direction controls for each bit.

Total of 31 pins of the Port 0 can be used as a general purpose bi-directional digital I/Os while P0.31 is

output only pin. The operation of port 0 pins depends upon the pin function selected via the pin connect

block.Pin P0.24 is not available.

 Port1 is a 32-bit bi-directional I/O port with individual direction controls for each bit. The operation

of port 1 pins depends upon the pin function selected via the pin connect block. Pins 0 through 15 of

port 1 are not available.

In LPC2138 MCU most of the pins are Multiplexed i.e. these pins can be configured to provide

different functions. we’ll explain this in upcoming labs. For now, just keep in mind that by default all

functional pins are set as GPIO so we can direclty use them when learning GPIO usage. Also note, All

GPIO pins are configured as Input after Reset by default

There are 4 registers we need to understand to program these ports.

1. IOxPIN (x=port number) : This register can be used to Read or Write values directly to the pins.

Regardless of the direction set for the particular pins it gives the current state of the GPIO pin when

read.

2. IOxDIR : This is the GPIO direction control register. Setting a bit to 0 in this register will configure

the corresponding pin to be used as an Input while setting it to 1 will configure it as Output.

3. IOxSET: This register can be used to drive an output configured pin to logic 1. Writing Zero does

NOT have any effect and hence it cannot be used to drive a pin to Logic 0.

4. IOxCLR: This register can be used to drive an output configured pin to logic 0. Writing Zero does

NOT have any effect and hence it cannot be used to drive a pin to Logic 1.

12

Now setting Pin 2 of Port 0 as output can be done in various ways as show :

 Case 1 must be avoided since we are directly assigning a value to the register. So while we are

making P0.2 ‘1’ others are forced to be assigned a ‘0’ which can be avoided by ORing and then

assigning Value.

 Case 2 can be used when bits need to be changed in bulk.

 Case 3 when some or single bit needs to be changed.

For example, Consider that we want to configure Pin 19 of Port 0 as output and want to drive it a high

logic, this can be done as:

Also Consider that we want to configuring P0.13 and P0.19 as output and setting them high:

Switches and Buttons
Switches and buttons are the basic input devices used to supply certain voltage level for

microcontrollers. Button/switch is a mechanical component, which connects or disconnects two points

A and B over its contacts. By function, button/switch contacts can be normally open or normally closed

Buttons can be connected to the microcontroller in one of two ways:

 Button with pull down resistor

 - When the button is presses, it will supply logical one (+5V) to MCU.

 - When the button is not pressed, the pull down resistor will supply logical zero(0v) to the MCU.

13

 Button with pull up resistor
- When the button is presses, it will supply logical zero(0v) to the MCU.

- When the button is not pressed, the pull up resistor will supply logical one (+5V) to MCU.

These ways are used in order to avoid unknown case (Not Zero & Not 5V), so one of these ways are

used to give ‘0’ or ‘1’ state normally. In LPC2138 the internal Pull-ups are enabled and implemented in

port1 from pin 16 to 25, the default state of the pins configured as Input will be always high unless it is

explicitly made low by connecting it to Ground

Lab Work:

 Lab Work 1

 You are going to use these keywords when you search for parts in Proteus:

A. Write and simulate a program that reads data from port0 and send it to port1.

14

B. Write a program that toggles a LED when clicking on a push button.

Note:

The needed time for the user to press the push button is approximately 200 ms, the speed of the LPC’s

work is very high, so ‘while true’ loop will be executed a lot of times through this period (200 ms),

which means that the button has been pressed many times, but in fact the user did it just once!.

So we need some delay after button clicking detection.

15

16

 Lab Work 2
You are going to use these keywords when you are search for parts in Proteus:

Write and simulate a program that increments a 7-segment by one with every click (range 0 to 9).

17

7-Segment Multiplexing
The simplest way to drive a display is via a display driver. These are available for up to 4 displays.

Alternatively displays can be driven by a microcontroller and if more than one display is required, the

method of driving them is called "multiplexing".

If a single display is to be driven from a microcontroller, 7 lines will be needed plus one for the

decimal point. For each additional display, only one extra line is needed.

To produce a 4, 5 or 6 digit display, all the 7- segment displays are connected in parallel. The common

line (the common-cathode line) is taken out separately and this line is taken low for a short period of

time to turn on the display. Each display is turned on at a rate above 100 times per second, and it will

appear that all the displays are turned on at the same time. As each display is turned on, the appropriate

18

information must be delivered to it so that it will give the correct reading. Up to 6 displays can be

accessed like this without the brightness of each display being affected.

 Lab Work 3
 You are going to use these keywords when you search for parts in Proteus:

19

20

Post Lab:

1. Include all your work during the lab.

2. Implement a system that toggles two LEDs when controlling that with

clicking on 2 push buttons.

3. Implement a system that counts from 00 to 99 and increments every one click

on a push button.

4. Simulate your work on Proteus and attach it.

